

VETERINARY MEDICINE & BIOMEDICAL SCIENCES

TEXAS A&M UNIVERSITY

Comparative Analysis of Species-Specific Hepatocyte Function and Drug Effects in a Liver Microphysiological System PhysioMimix LC12 and 96-Well Plates

findinas

<u>Chander K. Negi¹</u>, Courtney Sakolish¹, Han-Hsuan Doris Tsai¹, Stephen S. Ferguson², Remi Villenave³, Philip Hewitt⁴, and Ivan Rusyn¹

¹Texas A&M University, College Station, TX; ²Division of Translational Toxicology, NIEHS, Durham, NC; ³ Roche Ltd, Basel, Switzerland; ⁴Chemical and Preclinical Safety, Merck KGaA, Darmstadt, Germany

SUMMARY																
Expecte	ed Specie	es-S	Speci	fic Outo	comes		96 Well Plates					PhysioMimix LC12				
	Å	1				lt 1	Drug	Н	Μ	R	D	Drug	Н	Μ	R	D
		ų				nen	FIAU	10×	10×	10×	10×	FIAU	10×	10×	10×	10×
FIAU _{ax} 1μM	Toxic	Nor	n-toxic	Non-toxic	Non-toxic	oerir	BOS	1.3×	1.3×	1.3×	1.3×	BOS	1.3×	1.3×	1.3×	1.3×
						ЕX	CPZ	60×	60×	60×	60×	CPZ	20×	20×	20×	20×
BOS , 7.4 µM	Toxic	Nor	n-toxic	Non-tox	c Non-toxic	it 2	Drug	Н	Μ	R	D	Drug	Н	Μ	R	D
X 1						erimen	FIAU	30×	30×	30×	30×	FIAU	30×	30×	30×	30×
CPZ _x 0.5 μΜ	Toxic	Toxic		Toxic	Toxic		BOS	4×	4×	4×	4×	BOS	4×	4×	4×	4×
						Е×р	CPZ	60×	60×	60×	60×	CPZ	60×	60×	60×	60×
g Concentrations Tested per Experiment						ŝ	Drug	Н	М	R	D	Drug	Н	Μ	R	D
	FIAU		BOS		CPZ	nent	FIAU	100×	100×	100×	100×	FIAU	100×	100×	100×	100×
riment 1	2D: 1- 30 µM		2D: 1	- 30 µM		BOS	30×	30×	30×	30×	BOS	30×	30×	30×	30×	
rimont 2	2D· 1_ 30	μινί ινπ 3 μΜ 2D· 1			Λι Ο. ΤΟ μΙΜ D· 1_ 20 μΜ	Exp	CPZ	60×	60×	60×	60×	CPZ	60×	60×	60×	60×
	MPS: 30 µM		MPS: 30 µM		MPS: 30 µM	eriment 4	Drug	н	N/I	R	D	Drug	н	NЛ	R	D
riment 3	2D: 1- 100 μM MPS: 100 μM		2D: 1- 200 μΜ MPS: 200 μΜ		2D: 1- 30 μM MPS: 30 μM		FIALL	100×	100x	100×	100×	FIALL	100×	100×	100×	100x
							POS	202	20×	20×	20×		204	20×	20~	20~
riment 4	2D: 1- 100 µM		2D: 1-	200 µM 2	2D: 1- 30 µM	xpe	003	30^	30^	30*	30^	603	30^	30*	30*	30*
	WI 5. 100	μινι	WIF O.		inii 3. 30 μm	ш	CPZ	60×	60×	60×	60×	CPZ	60×	60×	60×	60×
Cto.				~ .												

2D Static Cultures:

- LDH Release (Cytotoxicity Marker):
- CPZ induced a dose-dependent increase in LDH release in human, monkey, and dog hepatocytes.
- BOS increased LDH release only in human hepatocytes.
- AST Levels (Hepatocellular Damage Marker):
- AST levels were elevated in human hepatocytes following treatment with CPZ and BOS.
- Albumin Secretion (Hepatocyte Function Marker):
- A decrease in albumin release was observed in human and monkey hepatocytes following CPZ treatment.
- FIAU reduced albumin secretion specifically in human hepatocytes.
- No significant effects were observed in other test conditions or species.

PhysioMimix LC12 Cultures with Media Flow:

- LDH Release:
- A significant increase in LDH release was observed in human hepatocytes following CPZ, BOS, and FIAU treatment.
- No significant LDH release was detected in hepatocytes from other species. **AST Levels:**
- CPZ treatment led to increased AST levels in both human and monkey hepatocytes.
- BOS treatment elevated AST levels in human hepatocytes.
- Albumin Secretion:
- CPZ treatment caused a decrease in albumin levels across all speciesspecific hepatocytes.
- BOS and FIAU reduced albumin secretion only in human hepatocytes.
- **Overall**, our findings suggest that species-specific DILI can be observed in both 2D and MPS cultures at comparable concentrations, 30-100 times in excess of human Cmax. MPS studies were more closely resembling species-specific effects, while 2D experiments showed some false-positive responses.
- **However**, the limitations with throughput in the MPS model precluded dose-finding studies while 2D experiments allowed for more confident determination of the relevant effect levels.
- **Further studies** are needed to test other mechanistic endpoints (such as lipids/bile acids) to determine if they are more sensitive phenotypes.

ACKNOWLEDGEMENTS

This work was performed via the TEX-VAL Consortium collaboration funded by equitable monetary contributions from member organizations (American Chemistry Council, Bristol-Myers Squibb, Merck KGaA, National Institute of Environmental Health Sciences, Sanofi, Unilever, Roche, and United States Environmental Protection Agency). This work was also supported, in part, by grants from NIH (U24 TR002633 and T32 ES026568) and the United States Environmental Protection Agency (STAR RD84003201). This manuscript has not been formally reviewed by EPA. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the Agency. The authors and funders do not endorse any products or commercial services mentioned in this presentation.